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Abstract— A Classification system such as an Automatic Target
Recognition (ATR) system with N possible output labels (or deci-
sions) will have N(N-1) possible errors. The Receiver Operating
Characteristic (ROC) manifold was created to quantify all of
these errors. Truthed data will produce an approximation to a
ROC manifold. How well does the approximate ROC manifold
approximate the true ROC manifold? Several functionals exist
that quantify the approximation ability, but researchers really
wish to quantify the performance in the approximate ROC man-
ifold. This paper will review different performance definitions
for ROC curves and manifolds, and thus, quantify the fusion of
ATR systems. Examples of different performances will be given
that are defined on manifolds.
Keywords: Performance, Evaluation, Classification Sys-
tem, ROC Manifold, functional

I. INTRODUCTION

Given a classification system, how does one quantify its
performance? What do we mean by the system’s performance?
Is there a best performance quantifier to use? This paper will
discuss many aspects of performances of a system and a family
of systems, and as a consequence, will define the performance
of the fusion of systems. Examples of different performances
will be given in the Examples section.

II. MATHEMATICAL BACKGROUND

This section gives the essential theory and notation in order
to discuss the different performances used to evaluate the
fusion of ATR systems, and classification systems.

A. Classification Theory

Let E be a population set of outcomes. These outcomes can
be real-life “events”1. An event could be a fixed-time event, a
space-time event, or a space-time-spectral event, to name a few
examples. Let E be a σ-algebra of subsets of E , then (E ,E)
is a measurable space [1]. Let P be a probability measure
defined on E, then (E ,E, P ) is a probability measure space.
Let s be a sensor that senses an event (i.e., an outcome) and
produces (raw) datum as its output, i.e., s : E → D, where
D is a (raw) data set. This data set may be too difficult to
quantify directly as it may be a collection or series of images

1In probability theory an event is a set of outcomes. Here we use it in the
informal sense.

or sequences of audio signals, for instance. Thus, a mapping
p defined on D produces an object called a feature that is a
more refined datum, typically a vector of real numbers. The
mapping p then is a processor that takes a (raw) datum and
produces a refined datum vector, i.e., p : D → F . Typically,
F is some finite dimensional space but need not be finite nor
a linear space. Let a be a classifier mapping F into a label
set L. That is, a : F → L. Example of a 2-label set is L =
{target, non-target}. Our interest for this paper is a label set
with N labels, say L = {�1, �2, �3, . . . , �n}. The composition
of these mappings yields a classification system A ≡ a◦p◦s.
The graphical representation of these mappings is given in the
following diagram.

E s �� D p �� F a �� L
The diagram for the system is written as

E A �� L
Since L = {�1, �2, �3, . . . , �n} is finite then the power set of
L , denoted by L, is the smallest σ-field of subsets of L. Now
define the collection of all measurable systems [1] mapping E
into L, by

S = {A : E → L |A is measurable }.
Let Θ be a set of parameters that might be a multi-

dimensional vector of parameters. For each θ ∈ Θ let aθ be an
classifier mapping F into the label set L. That is, aθ : F → L
for each θ ∈ Θ. The composition of these mappings yields a
classification system Aθ ≡ aθ ◦ p ◦ s. We define the family
of the classification systems, or for brevity, the classification
system family (CSF), to be A ≡ {Aθ : θ ∈ Θ}. Thus, A

is a subset of S . We define the collection of families of
classification systems to be

F = {A ⊂S : A is nonempty}.
B. Two Classification Systems

Consider the case when two sensors, s1 and s2, observe
events occurring in the same population set E . Assume they
produce data in the data sets D1 and D2, respectively. Further,
assume each sensor has its own processor, p1 and p2, which

597



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2008 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
Performances of an ATR System via its ROC Manifold 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Institute of Technology,Department of Mathematics and
Statistics,Department of Operational Sciences,Wright Patterson 
AFB,OH,45433 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
11th International Conference on Information Fusion, June 30 ? July 3, 2008, Cologne, Germany. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



maps datum in D1 to features in F1 and D2 to features in
F2, respectively. In particular, assume p1 : D1 → F1 and
p2 : D2 → F2. Suppose there is a family of classifiers for p1

and s1 given by {aθ : θ ∈ Θ} and another family of classifiers
{bφ : φ ∈ Φ} for p2 and s2, outputting labels in the label set
L. Thus, aθ : F1 → L for each θ ∈ Θ and bφ : F2 → L
for each φ ∈ Φ. The composition of these mappings yield
classification systems represented by the diagram.

D1
p1 �� F1

aθ �� L

E

s1
����������

s2 ���
��

��
��

�

D2
p2 �� F2

bφ �� L

Now define the system Aθ ≡ aθ ◦ p1 ◦ s1 for each θ ∈ Θ
and Bφ ≡ bφ ◦ p2 ◦ s2 for each φ ∈ Φ, and denote the
two classification system families A ≡ {Aθ : θ ∈ Θ} and
B ≡ {Bφ : φ ∈ Φ}.

The two classification systems developed above map out-
comes from the population set into different data, feature,
and label sets, which are then used to fuse the classification
systems together. There are, however, other ways to label the
outcomes from the event set. In this discussion, classification
systems can map outcomes into either the same or different
data sets or the same or different feature sets. The sets
which must remain the same for the mathematical development
contained herein are the event set E and the two-class label set
L. Therefore, the classification systems must be acting from
the same event set, map into either the same or different data
and feature sets and eventually map into the same label set.
That is,

L

E

Aθ

���������

Bφ ���
��

��
��

L

C. Fusion Rules

There are two types of fusion for classification systems. The
first type allows for the families of classification systems which
are to be fused to have exactly the same label set. We mean
exactly the same, and not isomorphic, so that if the label set
is, in fact, L = {target, non-target} for each family, then this
means that the actual definition of a target label is identical for
each. This allows for each family to partition the population
set in the same way. This type of information fusion we call
within fusion; the other type is called across fusion [2]. The

diagram for label fusion for two systems is

L

E

Aθ

���������

Bφ ���
��

��
��

� �� � R �� �� L

L
no matter which type of fusion it is. Given two CSFs A and
B and a fusion rule R, then a new family C is produced and
defined by

C = R(A, B) ≡ {R(Aθ,Bφ) : θ ∈ Θ, φ ∈ Φ}.

D. Receiver Operating Characteristic (ROC) Curves

For a 2-class label set L = {t, n}, (t denotes target and
n denote nontarget) the errors are false positive (type I
error, α) and false negative (type II error, β). Let PFP (Aθ)
denote the probability that the classification system Aθ labels
an event as a target label, t, given that the event is really a
non-target event. Let PFN (Aθ) denote the probability of false
negative classification by the system Aθ, then PFN (Aθ) is the
probability that the classification system Aθ labels an event as
a non-target label, n, given that the outcome is really a target
event. The ROC curve is the graph of the ROC function.

Definition 1: (ROC function, ROC curve) Let A = {Aθ :
θ ∈ Θ} be a family of classification systems defined on the
probability space (E ,E, P ) mapping to the label set L = {t, n}
with parameter set Θ. For each p ∈ [0, 1] , define the set

Θp ≡ {θ ∈ Θ : PFP (Aθ) ≤ p}.

For p ∈ [0, 1], if Θp is nonempty then define

fA(p) = max{PTP (Aθ) : θ ∈ Θp}. (1)

If Θp is empty then fA(p) is not defined. The function fA is
called the ROC function. The graph of fA is called the ROC
curve.

Since every classification system family will have a ROC
curve (determined by the parameter set), then there is a
mapping � that take a CSF A and produces its ROC curve
fA. That is, �(A) = fA.

E. ROC Manifolds

Assume the label set L = {�1, �2, . . . , �n} where n > 2,
and the classification system A : E → L is designed to map
the outcomes in the event set Ei ⊂ E to �i for each i = 1, ..., n.
Define the probability of true positive classification for a given
label �i of the classification system A by the conditional
probability

Pi|i(A) ≡ Pr{A(e) = �i | e ∈ Ei} =
Pr

(
A�({�i}) ∩ Ei

)
Pr (Ei)

.
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The probability that system A classifies an outcome as label
�i when the outcome is truly classified as label �j , is

Pi|j(A) = Pr{A(e) = �i | e ∈ Ej} =
Pr

(
A�({�i}) ∩ Ej

)
Pr (Ej)

.

(2)
We use the notation Pi|j(A) to convene the fact that Pi|j is
a real-valued function with the system A as its input. The
conjunctive equations of the system are

n∑
i=1

Pi|j (A) = 1 for each j = 1, 2, . . . , n (3)

and are true for every system A : E → L [3], [4]. Only the
i|i terms are correct classifications, the other n − 1 terms are
the errors of system A and, consequently, from equations (3)
we have

n∑
i=1,i �=j

Pi|j(A) = 1−Pj|j(A) for each j = 1, 2, . . . , n. (4)

For system A define the n×n matrix P(A) to be the matrix
whose i, j entry is the value Pi|j(A) for every i, j ∈ {1, ..., n},
that is,

P(A)i,j = Pi|j(A) =
Pr(A�({�i}) ∩ Ej)

Pr(Ej)
.

Notice that the diagonal entries of the matrix P(A) are the
correct classifications and the off-diagonal entries are the
errors associated with misclassification. By property (3) the
transposed matrix P(A)T is a stochastic matrix. Also, all the
entries of this matrix have values lying in the interval [0, 1].
Let Mn denote the set of n×n matrices whose entries lie in
[0, 1], that is,

Mn = {M = (Mi,j) : Mi,j ∈ [0, 1] for every i, j ∈ {1, 2, , .., n}}
then P(A) ∈ Mn. Define the matrix J ∈ Mn by

J =

⎡⎢⎢⎢⎢⎢⎣
0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 1
...

...
. . .

...
1 1 1 · · · 0

⎤⎥⎥⎥⎥⎥⎦ .

Matrix J will be used to remove the correct classifications
and keep only the errors of the system. Specifically, let P̃(A)
denote the n× n matrix given by the Hadamard product with
J

P̃(A) = J	P(A).

Let Zn denote the set of matrices in Mn with zero diagonal
entries and off-diagonal entries are real numbers between 0
and 1, that is,

Zn = {M ∈ Mn : Mi,i = 0 for all i = 1, 2, ..., n}.
Now we define the error set of the classification system

family.

Definition 2: (Error set) Given a classification system fam-
ily A define its error set EA to be

EA = {P̃(A) : A ∈ A}.
Observe that EA ⊂ Zn since the diagonal entries are

always zero. This set is comprised of many points (matrices),
however, we seek those ”closest” to the origin (zero matrix)
as we define in the following ROC function.

Definition 3: (ROC function) Given a classification system
family A define its ROC function ΥA to be, for every P̃ ∈ Zn

ΥA(P̃)

=

{
smallest α > 0 when αP̃ ∈ EA

∞ when αP̃ /∈ EA for all α ≥ 0

= min
{

α ∈ [0,∞] : αP̃ ∈ EA

}
.

Therefore, ΥA : Zn → [0,∞] .
The idea of this definition comes from Minkowski’s func-

tional (see [5] for its use in optimization.) An equivalent
definition of ΥA, useful for computations, is given in the
following theorem.

Theorem 1: Given a classification system family A with n
labels, for every P̃ ∈ Zn , with P̃ �= 0̃

ΥA(P̃) =
1∥∥∥P̃∥∥∥ min

{∥∥∥Q̃∥∥∥ : Q̃ ∈ EA and
〈
Q̃, P̃

〉
=

∥∥∥Q̃∥∥∥∥∥∥P̃∥∥∥}

and ΥA(P̃) = ∞ otherwise.
The ROC function allows us to define the frontier of the

error set, which we call the ROC frontier. The ROC frontier
will be the ROC manifold if it satisfies the manifold criterion.

Definition 4: (Manifold) [6] A manifold is a topological
space that is locally Euclidean, that is, around every point
in the space, there is a neighborhood that is topologically the
same as the open unit ball in Rm for some positive integer
m.

Definition 5: (ROC frontier, ROC manifold) Given a classi-
fication system family A with n labels, define its ROC frontier
MA to be the set

MA = {P̃ ∈ Zn : ΥA(P̃) = 1}.
If this set is a manifold, then MA is called the ROC manifold
for A.

For A = {Aθ : θ ∈ Θ} we assume the parameter set, Θ,
is homeomorphic to Rm for some positive integer m with the
usual Euclidean topology. Consequently, the error set, EA,
is also homeomorphic to some finite dimensional space, and
thus, MA will be a manifold.

Let R denote the collection of ROC curves (n = 2) or
manifolds (n > 2). That is,

R = {fA : A is a CSF defined on E} for n = 2
= {MA : A is a CSF defined on E} for n > 2
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III. PERFORMANCES

We choose a real-valued functional ρ that takes a system A
as its input and yields a positive real number as its output. We
call ρ(A) the performance of A, and ρ is called a performance
functional. Without loss of generality, we assume that a larger
value of ρ(A) is better performance. Consequently, given two
systems A and B, if

ρ(A) ≤ ρ(B)

then we say B is better than A with respect to ρ. This will

induce a partial ordering
ρ

 on systems in S , and hence, we
write

A
ρ

 B.

The system performance functional ρ (S -functional for
brevity) induces a family performance functional 	 (F -
functional for brevity) on a classification system family A by
the following definition

	(A) = max
A∈A

ρ(A) = max
θ∈Θ

ρ(Aθ).

Problem 1: Given a performance F -functional 	 and given
a set of label fusion rules LABrules we seek the best fusion
rule R∗ ∈ LABrules such that the performance

	 (R∗(A, B)) ≥ 	 (R(A, B))

for all choices R ∈ LABrules. That is,

	 (R∗(A, B)) = max
R∈LABrules

	(R(A, B)).

The optimal classification system family will be C∗ =
R∗(A, B) and the optimal fusion rule R∗ indicates how the
two families will be fused. But, have we done fusion here? It
depends on the performance. If

	 (R∗(A, B)) ≥ max{	(A), 	(B)}
then C∗ = R∗(A, B) is THE optimal classification system
family (with respect to 	.)

Definition 6: (Dual Set) Define the collection S � of real-
valued functionals ρ defined on systems mapping outcomes
from the measurable space (E ,E) into the label set L to be

S � = {ρ : S → R}.
We call S � the dual2 set of S . We are interested in

nonnegative functionals so we restrict this set further.
Definition 7: (Nonnegative Dual Set). Define the collection

S �+ to be the nonnegative, real-valued functionals ρ defined
on systems mapping outcomes from the measurable space
(E ,E) into the label set L to be

S �+ = {ρ : S → R
+}

where R+ = {r ∈ R : r ≥ 0}.

2We take care in using the word “dual set” here not to be confused with the
“dual space” as founded in functional analysis. A dual space is a linear space
of linear functionals over the field in use. We do not assume our functionals
are linear since we do assume the sets have algebraic structure that make
them linear spaces. If the label set was, in fact, a subfield of R then it would
the same.

Definition 8: Define the collection F �+ of nonnegative,
real-valued functionals 	 defined on classification system
families mapping from the measurable spaces (E ,E) into L
to be

F �+ = {	 : F → R
+}.

Now, suppose the performance 	(A) is determined via the
ROC curve fA (or the ROC manifold), that is, assume there
is a ROC functional ϕ that maps a ROC curve (or manifold)
to a number (see [3]), then

	(A) = ϕ(fA). (5)

Define the mapping � that takes a CSF A and outputs its ROC
curve fA. Therefore, equation (5) can be written as

	(A) = ϕ(�(A)).

Definition 9: (ROC functional) Define the collection R�+

of nonnegative, real-valued functionals ϕ defined on ROC
curves/manifolds to be

R�+ = {ϕ : R → R
+}.

That is, given a ROC manifold MA and a ROC functional
ϕ then ϕ(MA) is a nonnegative real number. Since we wish
this to be true for all CSFs, then we have

	 = ϕ ◦ �.

This equation tells us that given a ROC functional ϕ one can
make the performance functional 	 just by the composition
with �. Therefore, there is an induced mapping ��, called
the conjugate mapping (that is conjugate to �) defined by

	 = �
�(ϕ) ≡ ϕ ◦ �.

Thus, �� : R�+ → F �+.
Now we can restate problem 1 as
Problem 2: Given a ROC functional ϕ, and given a set of

label fusion rules LABrules we seek the best fusion rule R∗ ∈
LABrules such that the performance

ϕ (� (R∗(A, B))) ≥ ϕ (� (R(A, B)))

for all choices R ∈ LABRules. That is,

ϕ (� (R∗(A, B))) = max
R∈LABRules

ϕ (� (R(A, B))) (6)

This may not look like we are gaining anything new until
we look at the term �(R(A, B)) = fR(A,B) (or MR(A,B)). This
is the ROC manifold of the fused system.

IV. RESULTS

This section contains the main result that concerns deter-
mining a ROC functional ϕ given the performance functional
	.

Theorem 2: Given ϕ an R-functional there exists an unique
	 F -functional given by

	 = ϕ ◦ �.

This defines the conjugate mapping �� defined by

�
�(ϕ) = ϕ ◦ � for all ϕ ∈ R�.
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The domain of �� is all of R�, and �� : R� → F �.
Proof: The proof of this theorem is straightforward.

Theorem 3: Given ϕ ∈ R�+ there exists an unique 	 ∈
F ∗+ given by the conjugate mapping

�
�(ϕ) = ϕ ◦ �.

The domain of �� is all of R�+, and �� : R�+ → F �+.
Proof: Let ϕ ∈ R�+ then ϕ(MA) ≥ 0 for every ROC

manifold, MA ∈ R. Then[
�

�(ϕ)
]
(A) = [ϕ ◦ �] (A) = ϕ (� (A)) = ϕ (MA) ≥ 0

for every A ∈ F . Therefore,

�
�(ϕ) ∈ F �+.

V. EXAMPLES

This section contains well-known examples of performance
quantifiers of classifications system [7]. Let A denote a
classification system and A denote a family of classification
systems.

A. case n = 2

Assume the label L = {t, n} for this subsection.
Example 1: True Positive (TP) also called the hit rate,

recall, and sensitivity

ρTP (A) = PTP (A)
Example 2: True Negative (TN) also called the correct

rejection.
ρTN (A) = PTN (A)

Example 3: False Positive (FP) also called false alarm, and
Type I error

ρFP (A) = PFP (A).
Example 4: False Negative (FN) also called the Type II

error
ρFN (A) = PFN (A).

Example 5: Accuracy (ACC)

ρACC(A) = PTP (A) + PTN (A)
Example 6: Specificity (SPC)

ρSPC(A) = 1 − PFP (A)
Example 7: Positive Predictive Value (PPV) also called

precision

ρPPV (A) =
PTP (A)

PTP (A) + PFP (A)
Example 8: Negative Predictive Value (NPV)

ρNPV (A) =
PTN (A)

PTN (A) + PFN (A)
Example 9: False Discovery Rate (FDR)

ρ FDR(A) =
PFP (A)

PFP (A) + PTP (A)
Example 10: Matthews Correlation Coefficient (MCC)

[8], [9] is used in machine learning as a means to quantify the

2-class classification system A. For brevity, let tp = PTP (A)
, tn = PTN (A), fp = PFP (A) and fn = PFN (A) then

MCC(A) =
tptn − fpfn√

(tp + fp) (tp + fn) (tn + fp) (tn + fn)
.

If any of the four sums in the denominator is zero, the
denominator can be arbitrarily set to one; this results in a
Matthews Correlation Coefficient of zero, which can be shown
to be the correct limiting value. It takes into account true
and false positives and negatives and is generally regarded
as a balanced quantifier which can be used even if the classes
are of very different sizes. It returns a value between -1 and
+1. A coefficient of +1 represents a perfect performance,
0 an average random performance and -1 the worst possible
performance. That is, it quantifies the performance of the
classification system A Since MCC can be negative, we add
1 to get a nonnegative performance functional

ρMCC(A) = MCC(A) + 1.

By the disjunction equations we see that

MCC(A) =
1 − (fp + fn)√
1 − (fp − fn)2

so that

ρMCC(A) =
1 − (fp + fn) +

√
1 − (fp − fn)2√

1 − (fp − fn)2
.

Example 11: Let g(ξ, η) be a non-negative function for
every (ξ, η) ∈ [0, 1]2 then consider the S -functional

ρg(A) = g(PFP (A), PTP (A))

and the corresponding F -functional is

	g(A) = max
A∈A

ρ(A) = max
A∈A

g(PFP (A), PTP (A)).

All the previous examples have a well-defined choice of a
function g.

Example 12: The area under the ROC curve is NOT a
functional defined as a Riemann integral

	AUC(A) =
∫ 1

0

fA(p) dp.

This functional is NOT a F -functional since

	AUC(A) �= max
A∈A

ρ(A)

for any S -functional ρ.

B. case n > 2
Example 13: Bayes Cost (BC) Given error cost values

Ci,j ≥ 0, that is, the cost to make the i, j error (Ci,i = 0)
then the Bayes cost for the system A is

ρBC(A) =
n∑

i=1

n∑
j=1

Ci,jP (Ej) Pi|j(A)

= V	 C	 P(A)
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when matrix V = v ⊗ 1T where

v = (P (E1) , P (E2) , . . . , P (En))
1 = (1, 1, . . . , 1)

then
	BC(A) = max

A∈A

ρBC(A).

VI. CONCLUSIONS

There is a large collection of performance functionals to
choose from. To evaluate an ATR system one should consider
the performance criteria used. It might come down to analyz-
ing the ROC curve/manifold. In order to evaluate the fusion of
multiple system families, one needs to know the performance
functional used (see equation (6).)
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